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Abstract

We address the challenging large-scale content-based
face image retrieval problem, intended as searching images
based on the presence of specific subject, given one face
image of him/her. To this end, one natural demand is a su-
pervised binary code learning method. While the learned
codes might be discriminating, people often have a further
expectation that whether some semantic message (e.g., visu-
al attributes) can be read from the human-incomprehensible
codes. For this purpose, we propose a novel binary code
learning framework by jointly encoding identity discrim-
inability and a number of facial attributes into unified bi-
nary code. In this way, the learned binary codes can be ap-
plied to not only fine-grained face image retrieval, but also
facial attributes prediction, which is the very innovation of
this work, just like killing two birds with one stone. To eval-
uate the effectiveness of the proposed method, extensive ex-
periments are conducted on a new purified large-scale web
celebrity database, named CFW 60K, with abundant man-
ual identity and attributes annotation, and experimental re-
sults exhibit the superiority of our method over state-of-the-
art.

1. Introduction
Content-based face image retrieval is concerned with au-

tomatic computer retrieval of face images of a given subject

from a large-scale database with discriminative features. It

emerges as a promising research direction with increasing

demands, especially in the era of Internet multimedia in-

volving huge body of face images. Imagine that people al-

ways wish to retrieve as many photos of a specific celebrity

as possible, given one photo containing him/her as query;

and it is also very helpful for police to search and locate

a criminal suspect among a huge number of images cap-

tured by city surveillance system with a photo of him/her

taken at the crime scene via CCTV. Both scenarios are ex-

tremely challenging, and the challenges mainly lie in two

aspects: a) faces, especially the ones captured in the wild

unconstrained environments always contain lots of varia-

tions, such as illumination, head pose, facial expression,

occlusion, and sometimes heavy make-up, thus forming a

phenomenon that the within-class variance is even larger

than the between-class variance; b) the scale of database

is in most cases so large that compact face representation

becomes an urgent demand in order to reduce the storage

cost and matching complexity.

For the first aspect, a number of methods have been pro-

posed [29, 6, 1, 18] for conducting discriminant face repre-

sentation. In [29] it utilizes different color spaces and stan-

dard PCA to extract discriminant facial representation for

retrieval; in [6] a robust face retrieval approach is presented

using structural and spatial point correspondence where the

directional corner points (DCPs) are generated for efficient

face coding; in [1] face image retrieval is conducted under

a sparse coding based semi-supervised learning framework;

in [18] it chooses Gabor-LBP histogram as facial represen-

tation followed by a sparse representation classifier for re-

trieval. While these works have achieved certain success

mostly in well-controlled databases, they all have their face

representation to be high-dimensional real-valued, which

will inevitably limit their scalability to large-scale realistic

retrieval scenario, which typically requires not only accu-

rate but also compact representation for fast search. YES,

binary code is a natural solution.

For the second aspect of the challenges, various bina-

ry code learning (a.k.a, hash learning) methods, have been

proposed [7, 3, 13, 25, 37, 8, 11, 34, 26, 21], because bi-

nary codes are quite efficient to match with sub-linear time

complexity, and are able to index a huge size of images with

very short code length [22]. The basic idea of hashing is to

learn similarity preserving binary codes for data represen-

tation, i.e., each data point will be hashed into a compact
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Figure 1: Schematic plot of the whole framework of the proposed method. Different from other binary code learning methods,

we innovatively embed semantic facial attributes information into the code learning process to generate multipurpose binary

codes, which can be used not only for face image retrieval, but also for facial attributes prediction.

binary string, and similar data points in the original feature

space should be hashed into close points in the hash code

space (always Hamming space). Existing hashing methods

can be roughly divided into two types, i.e., data indepen-
dent and data dependent. Representative data independent

hashing methods include the pioneering Locality-Sensitive

Hashing (LSH) [7] and its derivatives [3, 13], and Shift-

Invariant Kernel Hashing (SIKH) [25]. Nevertheless, due to

their inherent property that the original metrics are asymp-

totically preserved in the target Hamming space with in-

creasing code length, LSH related methods usually achieve

satisfactory performance at the expense of long codes. To

overcome such disadvantage, another type, i.e., data depen-

dent methods, have come up with their hash functions be-

ing learned from training data. Representative methods in-

clude Spectral Hashing (SH) [37], and ITerative Quantiza-

tion (ITQ) [8], etc. Most recently, an increasing number

of methods attempt to further boost performance by inte-

grating discriminant supervised information into the hash

functions learning, and then form a sub-branch of data de-

pendent hashing methods, i.e., supervised hashing method-

s. Representative methods include Semi-Supervised Hash-

ing (SSH) [34], Kernel-based Supervised Hashing (KSH)

[21], Discriminative Binary Code (DBC) [26], and Super-

vised ITerative Quantization (SITQ) [8].

Discriminative binary code successfully solved the prob-

lem of large-scale data matching and storing with its com-

pactness merit. Let’s look a bit closer at the binary code.

Each bit with value +1 or −1 can be naturally deemed as

a discriminant “attribute” classifier, which indicates the p-

resence or absence of such “attribute”. While these “at-

tributes” do have a certain level of discriminability, they

generally carry little (if not nothing) semantic meaning that

can be understood by human beings. Actually, attributes as

a powerful mid-level representation have been investigat-

ed in a variety of computer vision tasks, including recog-

nition, classification, image description and retrieval in re-

cent years [5, 15, 17, 4, 16, 30, 14, 24, 28, 27, 38]. Firstly

proposed in the computer vision community in [5], visual

attributes can be automatically assigned to objects, scenes

as text labels using standard machine learning techniques.

After this pioneering work, later works have looked at vi-

sual attributes in the context of recognition [17, 4, 16, 28],

zero-shot learning [17, 24, 38], automatic image description

generating [14, 24], and image retrieval [15, 30, 27]. Be-

sides, visual attributes also find successful applications in

face recognition, verification, and retrieval [15, 16, 30, 27].

The most representative work is [16], where 65 facial at-

tributes are defined (e.g., male, female, sunglasses, wavy
hair, mustache), and the outputs of binary attribute classi-

fiers are used as face feature representation. The reason for

the success of visual attributes lies in that as a mid-level rep-

resentation, they contain human-comprehensible semantic

meaning that can effectively bridge the huge gap between

low-level visual features and high-level vision tasks. Un-

fortunately, binary codes learned for retrieval do not have

such helpful property yet. Therefore, we cannot help ask-

ing: is it possible to incorporate some semantic informa-

tion into the binary code learning process, i.e., encoding a

number of human-comprehensible facial attributes into the

binary codes, e.g., gender, race, age, facial expression? If

the answer is “yes”, we can not only use the learned binary

codes to retrieve face images of certain subjects, but also

decode facial attributes information from the codes to carry

out more high-level tasks, e.g., attribute prediction, or even

retrieving face images with certain attributes.

Motivated by the analysis above, in this paper we make

the first attempt to integrate the discriminative binary code

learning and facial attributes encoding into a unified frame-

work by jointly optimizing the code discriminability and

code-attribute consistency, which turn out to be mutually

helpful. By doing so, the learned codes can thus be used for

two tasks at the same time, i.e., large-scale face image re-

trieval and facial attributes prediction, just like killing two

birds with one stone. Fig. 1 shows the schematic plot of

the proposed method. To evaluate the effectiveness of the

proposed method, we conduct two groups of experiments

on a new purified large-scale web celebrity database named
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CFW-60K to respectively test the above two functionali-

ties, i.e., face image retrieval and facial attributes predic-

tion. Benefited from the inherent complementarity of iden-

tity discriminability and code-attribute consistency, we are

glad to find that our method achieves comparable or even

superior performance against the competing methods which

are specifically tailored to either of the two functionalities.

2. Proposed Method
To learn the desirable binary codes mentioned before, we

propose that three constraints need to be taken into consid-

eration: a) identity discriminability, i.e., the target Ham-

ming space should be first discriminant, where the Ham-

ming distance between images of the same category should

be minimized, meanwhile images from distinct categories

should better have quite different binary codes; b) code-
attribute consistency, i.e., the semantic attributes decoded

from the binary codes should be consistent with the ground-

truth probabilities of such attributes appearing in the corre-

sponding images; c) code prediction stability, i.e., images

looking similar in the feature space should be mapped to

similar hash codes within a short Hamming distance. Next,

we will discuss each of them in detail.

2.1. Problem Description

Assume that we have N training images organized as

X = [x1,x2, ...,xN ] ∈ R
d×N , where xi ∈ R

d is the ith im-

age with a d-dimensional representation. For each train-

ing image xi, we also have its ground-truth class label

li ∈ {1,2, ...,P} indicating his/her identity, where P is the

total number of categories. In addition to the identity label-

s, we also have the ground-truth annotation of T attributes

for all N training images in a form of image-attribute an-

notation matrix, denoted by A ∈ {−1,0,+1}N×T , where ait
indicates the presence, absence, or uncertainty of the tth at-

tribute in the ith image with value +1, −1, or 0, respective-

ly. Our target here is to obtain a linear hash function f (xi) :

R
d → {−1,+1}K×1, which maps the image xi ∈ R

d from

the original feature to the binary code bi ∈ {−1,+1}K×1,

where K denotes the length of binary code. Without loss of

generality, in this paper we define the linear hash function

f (xi) as follows:

f (xi) = sgn(W T xi) = bi, (1)

where W ∈ R
d×K is the projection matrix, and sgn is the

signum function. To measure the distance between binary

codes bi and b j, here we use the classic normalized Ham-

ming distance:

disH(bi,b j) =
1

4K
‖bi−b j‖2. (2)

2.2. Identity Discriminability

The identity discriminability of binary codes in Ham-

ming space is expected most for reliable retrieval. To this

end, we decompose the discriminability constraint into t-

wo components, i.e., intra-category compactness and inter-

category separability. That is, images from the same cat-

egory should have similar codes, and images from differ-

ent categories should have better separability in the target

Hamming space. Then we define the scatter measures of

within-category Sw and between-category Sb as:

Sw =
N

∑
i=1

N

∑
j=1

Iw
i j‖bi−b j‖2, (3)

Sb =
N

∑
i=1

N

∑
j=1

Ib
i j‖bi−b j‖2, (4)

where Iw, Ib indicate the within- and between-category re-

lationships of training images defined as follows.

Iw
i j =

{
1 if li = l j

0 otherwise
, Ib

i j =

{
1 if li �= l j

0 otherwise
. (5)

Thus, to implement a strong discriminability, we minimize

the following energy function Edis formulated as

Edis = Sw−αSb, (6)

where α serves as the trade-off parameter for balancing the

scale of Sw and Sb.

2.3. Code-Attribute Consistency

In this subsection, we discuss how to encode semantic

visual attributes into the binary codes. Technically, we im-

plement this encoding by exploring the correlation between

visual attributes and the hash bits via the classic formulation

of collaborative filtering [9, 23, 12, 33, 36] as follows:

Econs =
T

∑
t=1

N

∑
i=1

‖ait −bi
T ut‖2 +λ

T

∑
t=1

‖ut‖2, (7)

where ut ∈ R
K×1 indicates the correlation between the tth

visual attribute and the K-dimensional binary code (i.e., K
hash bits), λ serves as a trade-off parameter on regularizer

to avoid overfitting. The matrix form of ut can be written as

U = [u1,u2, ...,uT ]∈RK×T , which plays the role of a bridge

to connect the two views, i.e., visual attributes and hash

code bits. Moreover, with this bridge, semantic attributes

information can be reconstructed (predicted) from the K-bit

binary code, by projecting the code from Hamming space

to the T -dimensional attribute space as:

âi = bi
TU, i ∈ {1,2, ...,N}, (8)

where âi = [âi1, âi2, ..., âiT ] ∈ R
1×T is the predicted output

of the T attributes for the ith image.

Let’s talk more about the image-attribute annotation ma-

trix A ∈ {−1,0,+1}N×T . Slightly different from the pre-

vious approaches [9, 23, 12, 33, 36] where an additional
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confidence matrix is usually introduced to assign different

weights for the elements in A to reflect the confidence of

user-item annotation (usually A only contains two values,

i.e., +1 and -1, which respectively indicate positive and neg-

ative/missing, and dominant weights are assigned to posi-

tive annotations), in this paper we extend the two-valued A
to three-valued, i.e., +1, 0, -1, and equally treat every anno-

tation without the need of the confidence matrix. The reason

for introducing the uncertainty 0 is that we want to explicit-

ly indicate ambiguity annotation and expect the learned at-

tribute predictors to be highly consistent with human being

perception on facial attributes, e.g., a well learned gender

predictor should also “feel helpless” as human beings do

when it comes to the face image of an infant (since it’s real-

ly not an easy job for human beings to estimate the gender

of an infant).

2.4. Code Prediction Stability

Code prediction stability (sometimes also called as gen-

erality, learnability, or predictability) is another crucial con-

straint in binary code learning. Intuitively, it is the concern

about similarity preserving, i.e., visually similar images in

the original feature space should be better mapped to simi-

lar hash codes within a short Hamming distance. Each hash

function (binary code bit) can be viewed as a split in the

original feature space, and we want the most stable splits.

Specifically, a split is stable when it has large margins from

samples (images) around it. Think about such a disappoint-

ing situation where a split crosses an area with dense sam-

ples, many actually neighboring samples will be inevitably

assigned different hash values. Inspired by [26], we subtly

utilize the classical technique, i.e., Support Vector Machine

(SVM) [2], which is endowed with the max-margin proper-

ty in hyperplane learning, to learn the linear hash function in

Eqn. (1) and thus make the mapping more stable on unseen

test samples. As a consequence, we describe the constraint

of code prediction stability as an energy function Estab:

Estab =
K

∑
k=1

∥∥∥wk
∥∥∥2

+C
K

∑
k=1

N

∑
i=1

max(1−bk
i (w

kT
xi),0), (9)

where wk ∈ R
d ,k ∈ {1,2, ...,K} (corresponding to the kth

column of the projection matrix W in Eqn. (1)) denotes

the kth hyperplane (i.e., hash function), and C balances the

empirical training error and the hyperplane margin.

2.5. Objective Function

After the analysis above, we can reach the final objective

function by combining Eqn. (6), Eqn. (7), and Eqn. (9) to

simultaneously consider the three learning constraints:

min
B,U,W

Edis +βEcons + γEstab, (10)

where B, U , W are the matrix forms of bi, ut , and wk, i.e.,

B = [b1,b2, ...,bN ] ∈ {−1,+1}K×N , U = [u1,u2, ...,uT ] ∈
R

K×T , and W = [w1,w2, ...,wK ] ∈ R
d×K , and β , γ are the

trade-off parameters to balance the roles of each term. By

substituting Eqn. (6), Eqn. (7), and Eqn. (9), the objective

function can be rewritten as follows:

min
B,U,W

N

∑
i=1

N

∑
j=1

Iw
i j‖bi−b j‖2−α

N

∑
i=1

N

∑
j=1

Ib
i j‖bi−b j‖2

+β
T

∑
t=1

N

∑
i=1

‖ait −bi
T ut‖2 +βλ

T

∑
t=1

‖ut‖2

+γ
K

∑
k=1

∥∥∥wk
∥∥∥2

+ γC
K

∑
k=1

N

∑
i=1

max(1−bk
i (w

kT
xi),0).

(11)

Directly minimizing Eqn. (11) is intractable as it is a non-

convex integer programming problem, therefore a block co-

ordinate descent method is proposed in Section 3.

3. Optimization Algorithm
3.1. Iterative Optimization

Since the objective function Eqn. (11) is non-convex, it

is infeasible to find a global analytical solution. In prac-

tice, we propose to utilize block coordinate descent method

[31] to independently optimize each individual component

to iteratively update B, U , and W . Technically, we first de-

compose the objective function into two sub-optimization

problems as follows:

SOP1: min
B,U

N

∑
i=1

N

∑
j=1

Iw
i j‖bi−b j‖2−α

N

∑
i=1

N

∑
j=1

Ib
i j‖bi−b j‖2

+β
T

∑
t=1

N

∑
i=1

‖ait −bi
T ut‖2 +η

T

∑
t=1

‖ut‖2,

(12)

SOP2: min
W

K

∑
k=1

∥∥∥wk
∥∥∥2
+C

K

∑
k=1

N

∑
i=1

max(1−bk
i (w

kT
xi),0), (13)

where η in Eqn. (12) is utilized to replace the parameter

βλ in Eqn. (11) for simplifying the formulation.

The proposed algorithm is conducted by iteratively opti-

mizing SOP1 and SOP2 to update B, U , and W . The pseudo-

code of the optimization can be found in Algorithm 1. Now,

we give a detailed description. First, we initialize B by us-

ing PCA, which makes B have an orthogonal property, fol-

lowed by the signum function (line 1∼line 2). Second, we

use the initial B to update U by optimizing SOP1 in Eqn.

(12) (line 3). For SOP1, we further simplify it by rewriting

in a compact matrix form as:

SOP1 : min
B,U

Tr(BLwBT )−αTr(BLbBT )

+β‖A−BTU‖2

F +η‖U‖2
F ,

(14)

where Lw, Lb are the graph Laplacian matrices computed

by Lw = Dw− Iw, Lb = Db− Ib (Iw and Ib are defined in
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Eqn. (5), and they can be viewed as the adjacency matrices;

and Dw and Db are N×N diagonal degree matrices whose

entries are given by Dw
ii = ∑N

j=1Iw
i j and Db

ii = ∑N
j=1Ib

i j), and

‖ · ‖F is the Frobenius norm of matrix. By taking the deriva-

tive of SOP1 with respect to U , and setting the gradient to

0, we can obtain the closed form solution of U as follows:

∂SOP1

∂U
= 2βB(BTU−A)+2ηU, (15)

Ũ = (BBT +λ I)
−1

BA, (16)

where I is the K×K identity matrix. Third, we fix Ũ to

update B by optimizing SOP1 in Eqn. (12) (line 4). Howev-

er, directly minimizing SOP1 to optimize the binary-valued

B as an integer programming problem has been proven to

be NP-hard. Therefore, we convert the current optimization

problem into a relaxed version by using the magnitude in-

stead of the signum function as suggested in [21, 35], i.e.,

optimizing B by regarding it as a real-valued rather than

binary-valued matrix with an additional Frobenius norm

constraint (please find more details in supplementary ma-

terial). The gradient of SOP1 with respect to B is calculated

as follows:

∂SOP1

∂B
= 2βU(UT B−AT )+2BLw−2αBLb. (17)

With this obtained gradient, a limited memory quasi-

Newton method L-BFGS [20] is applied to minimize SOP1.

Please note that it is in this step, the identity discriminabil-

ity is implemented. Fourth, we binarize the new updated

real-valued B via signum function, and turn to SOP2 for

optimizing the hash functions W (line 5∼line 6). As men-

tioned in Section 2.4, we directly use SVM to implement

the optimization of SOP2. More specifically, for the kth bit,

we use bk ∈ {−1,+1}1×N as training labels to train the kth

SVM hyperplane, i.e., the kth hash function wk. Fifth, we

use the trained K SVMs to update B via Eqn. (1) (line 7).

The whole optimization is looped from the second to fifth

step by iteratively update B, U and W , and in practice we

find that usually two or three iterations can achieve the con-

vergence (please see supplementary material for more about

convergency).

3.2. Discussion

Method Property: The idea of exploring binary code

related semantic information can be traced back to [26] and

[28]. Specifically, [26] tried to interpret the learned dis-

criminative hash bits via 2-D visualization, however, it ap-

pears a bit farfetched to name an attribute implicitly only

depending on visualization. [28] tried to augment semantic

attributes with non-semantic ones, while the augmentation

manner is straightforward via directly concatenating the t-

wo parts. Different from the previous works, our method

Algorithm 1 Optimization

Input: Training images X = [x1,x2, ...,xN ] ∈ R
d×N , image-

attribute annotation matrix A ∈ {−1,0,+1}N×T , and

ground-truth labels li ∈ {1,2, ...,P}, where i ∈ {1,2, ...,N}.
Output: B ∈ {−1,1}K×N , U ∈ R

K×T , W ∈ R
d×K .

Initialization:

1. Initialize B: B← Projection of X on first K components

of PCA(X);
2. Binarize B: B← sgn(B);
Repeat until convergence
3. Fix B to optimize U with Eqn. (16);

4. Fix U to optimize B with Eqn. (17);

5. Binarize B: B← sgn(B);
6. Train K SVMs to update W with Eqn. (13);

7. Update B with Eqn. (1);

End

for the first time attempts to integrate the binary code learn-

ing and attribute encoding into a whole framework, where

the two tasks are twisted together and optimized iteratively

(please refer to the experiment section for complementar-

ity evaluation). In some sense, the proposed method can

also be viewed as an extension of [26] with a complemen-

tary task by explicitly embedding semantic attributes into

the code learning procedure, and it is expected such attempt

would provide some insightful thoughts that it is theoreti-

cally feasible and of great significance to encode different

messages into binary code, not only limited to identity dis-

criminability.

Parameters Sensitivity: From our main objective func-

tion in Eqn. (10/11), a few parameters are observed to have

potential influence on the performance of the learned bina-

ry code. Nevertheless, most of them have clear physical

meanings and thus can be easily tuned. In particular, since

the three components of Eqn. (10) are optimized separate-

ly in an iterative manner (Alg.1), β and γ mainly play the

role of balancing each component, and can be simply set to

equally weight those components. For the component Edis,

α can be simply set to normalize the pair numbers in Sw
and Sb, and for the component Estab, C is set to the default

value 1 as standard SVM. Therefore, the only substantial

parameter is the regularization coefficient λ for the compo-

nent Econs, which needs some effort to tune via a grid search

with cross-validation and is selected as λ = 6×10−4 in our

empirical study.

4. Experiment
To justify the two functionalities of the learned bina-

ry code, i.e., large-scale face image retrieval and facial at-

tributes prediction. We conduct two groups of experiments

respectively for each task, and all the experiments are con-

ducted on a new purified large-scale web celebrity database,

named by us CFW 60K.
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4.1. Large-scale CFW 60K
Celebrity Faces on the Web (CFW) [39] is a large-scale

database of celebrity face images collected from the Inter-

net, and the released version contains about 200,000 faces

of 1,500+ subjects. Compared with the popular LFW [10],

each subject in CFW has more distinct images (average

100+ images for each subject), and these images include

relatively more complex and real variations (some example

images are shown in Fig. 1, Fig. 3, and Fig. 5, and please

find more in supplementary material). However, the origi-

nally provided identity labels of CFW are generated auto-

matically, which would inevitably involve a number of in-

correct annotations. To fix such problem, for every face im-

age we invite three annotators to check whether the claimed

label is correct, and only images with three positive con-

firmations are preserved. Besides, the three annotators are

also required to annotate five facial landmarks for each face

(i.e., geometric centers of two eyes, tip of nose, and two cor-

ners of mouth). Finally, the purified CFW contains 153,461

faces of 1,520 subjects, and we name this version as CFW-

p.

In this paper, we select 500 most famous subjects con-

taining 60,000 images from CFW-p to form the CFW 60K

database1. Moreover, we further select 10,000 images (20

images × 500 subjects) from CFW 60K to annotate 14 fa-

cial attributes including gender, race, age, eye accessory,

and facial expression (please see Table 2 for details) with

the help of seven annotators. Please note that the final at-

tributes annotations are presented with three values, i.e.,

+1, −1, and 0, for respectively indicating the presence, ab-

sence, and uncertainty of a certain attribute.

4.2. Experimental Setting
As we categorize this work under the fields of binary

code learning and semantic attributes embedding, we won’t

specially focus on the choice of front-end face representa-

tion. Therefore, without loss of generality, classic Gabor

feature [19] is used to represent a face image in this pa-

per. More specifically, for each image, we crop the face

to a fixed size of 80× 64, and block-wise Gabor feature

with 5 scales and 8 orientations is extracted to form a 4000-

dimensional feature.

4.3. Evaluation on Face Image Retrieval
Data Partition: Among the 10,000 images (with 14 fa-

cial attributes annotation), we take 5,000 images of them

(10 images× 500 subjects) to form the training set. For test-

ing, we use the 50,000 images (without facial attributes an-

notation) as database, and choose 2,500 images from them

(5 images × 500 subjects) as query set.

Comparative Methods: Since our method in general is

a binary code (hash) learning method, to evaluate its re-

1The matlab implementation and database can be downloaded from

http://vipl.ict.ac.cn/resources/codes.

Table 1: Comparison with state-of-the-art hash learning

methods with different code lengths in mAP on CFW 60K.
Method 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits

LSH [7] 0.0041 0.0162 0.0223 0.0295 0.0453 0.0707

RR [8] 0.0047 0.0181 0.0280 0.0406 0.0621 0.0822

ITQ [8] 0.0053 0.0172 0.0281 0.0424 0.0598 0.0792

SH [37] 0.0064 0.0170 0.0309 0.0410 0.0576 0.0851

SSH [34] 0.0114 0.0284 0.0435 0.0627 0.0871 0.1048

DBC [26] 0.0067 0.0216 0.0348 0.0506 0.0774 0.1133

KSH [21] 0.0088 0.0238 0.0422 0.0641 0.0917 0.1247

SITQ [8] 0.0055 0.0209 0.0341 0.0605 0.1151 0.1846

Ours 0.0089 0.0241 0.0466 0.0771 0.1277 0.1979

trieval performance, we select several representative hash-

ing methods for comparison in this part, including Locality-

Sensitive Hashing (LSH) [7], Random Rotation (RR) [8],

ITerative Quantization (ITQ) [8], Spectral Hashing (SH)

[37], Semi-Supervised Hashing (SSH) [34], Discrimina-

tive Binary Code (DBC) [26], Kernel-based Supervised

Hashing (KSH) [21], and Supervised ITerative Quantization

(SITQ) [8]. For fair comparison, we use the same 4000-

dimensional Gabor feature for all the comparative methods,

and the important parameters of each method are empirical-

ly tuned according to the recommendations in the original

references as well as the source codes provided by the orig-

inal authors.

Measurements: For quantitative evaluation, we use the

standard definition of mean Average Precision (mAP) [32]

and the precision recall curve calculated among the range

of whole database as measurements.

Results and Analysis: Table 1 and Fig. 2 show the

comparison results in mAP and precision recall curve with

different code lengths. It is obvious to find that: a) su-

pervised hashing methods achieve higher retrieval perfor-

mance than those unsupervised and semi-supervised meth-

ods, which can be mostly attributed to the full use of su-

pervised information. Moreover, among those supervised

hashing methods, SITQ is shown to have an edge over the

others. One possible explanation is that the CCA prepro-

cessing in SITQ perfectly embeds the two views (i.e., orig-

inal features and identity labels) into a discriminative com-

mon space which is conducive to the subsequent code learn-

ing; b) SSH exhibits superior performance for small num-

ber of bits (i.e., 8, 16 bits) because there is enough vari-

Figure 2: Comparison with state-of-the-art binary code

learning methods with different code lengths in precision

recall curve on CFW 60K.

3824



Query Image 

1 2 3 4 5 6 7 8 9 
LSH: 
5/10 

10 

SH: 
4/10 

ITQ: 
4/10 

SSH: 
7/10 

1 2 3 4 5 6 7 8 9 
DBC: 
6/10 

10 

KSH: 
7/10 

SITQ: 
7/10 

Ours: 
9/10 

Figure 3: A real retrieval case on CFW 60K with 256 bits binary codes, where the query is a face image of Arnold
Schwarzenegger. For space limitation, only the top ten feedbacks of each method are shown here (please find more cas-

es in supplementary material).

Table 2: Comparison with classic attribute classifiers (Ku-

mar et al. [16]) in classification accuracy. For our method,

256 bits are used in this comparison.

Attribute Kumar et al. Ours Attribute Kumar et al. Ours

Male 0.9178 0.9400 Mid-Aged 0.6772 0.6712

Female 0.9178 0.9400 Senior 0.9170 0.9168

Asian 0.9460 0.9458 No Glasses 0.9480 0.9796

White 0.8198 0.8384 Eye Glasses 0.9640 0.9822

Black 0.9140 0.9228 Sun Glasses 0.9834 0.9832

Indian 0.9482 0.9276 Positive Exp. 0.6696 0.6342

Youth 0.6618 0.7276 Neutral Exp. 0.6732 0.6380

ance in the top few orthogonal directions computed in SSH

(similar phenomenon can be found in the original literature

of SSH); c) we are glad to find that although the proposed

method simultaneously deals with the constraints of identi-

ty discriminability and code-attribute consistency (there is

no doubt that this is more challenging than the optimiza-

tion with only one constraint), it achieves comparable or

even better performance than the other hashing methods;

d) content-based large-scale face image retrieval is indeed

an extremely challenging problem, and even the best hash-

ing method can only achieve an mAP below 0.2 on CFW

60K with the current evaluation protocol. For this, two as-

pects should both be explored, i.e., more powerful front-end

face representation (e.g., deep learning based features) and

better discriminative binary code learning method for the

back-end indexing (encoding as much discriminative infor-

mation as possible into the binary codes). We also provide

a real retrieval case on CFW 60K to exhibit our superiori-

ty in Fig. 3, and please find more cases in supplementary

material. At last, we also compare the proposed method

with two classic real-valued representation based face re-

trieval methods (both methods are carefully implemented

by us), i.e., [29] (different color spaces+PCA with 4000-

dimensional final representation: 0.1761) and [18] (Gabor-

LBP+sparse coding with 5000-dimensional final represen-

tation: 0.2218). Although such comparison is unfair, i.e.,

256 bits v.s. 4000/5000-dimensional, ours still achieves

comparable performance (0.1979).

4.4. Evaluation on Facial Attributes Prediction

Data Partition: In this experiment, among the 10,000

images (with 14 facial attributes annotation), we take the

same 5,000 images as Section 4.3 for training, and take the

rest 5,000 images for testing.

Comparative Method: To evaluate the performance on

facial attributes prediction, we choose the classic method

proposed in [16] for comparison, i.e., training SVM at-

tribute classifier with RBF kernel for each attribute. We

choose it because it has been proven to be not only simple

but also powerful and practical [15, 16].

Measurement: In this experiment, we use the classifica-

tion accuracy (the same to [16]) as measurement.

Results and Analysis: Table 2 shows the comparison

result in classification accuracy on 14 facial attributes. Al-

though only 256 bits are used, our method achieves compa-

rable performance with the baseline method which direct-

ly utilizes the original 4000-dimensional real-valued Gabor

feature. To better exhibit the performance of our method,

four real cases are shown in Fig. 5. The reason behind

such promising results is that the optimization of attribute

predictor in our method (i.e., the U in Eqn. (8)) is con-

ducted by simultaneously considering all the attributes (the

baseline method treats each attribute individually), and the

correlation between attributes can thus be embedded into

the learning of attribute predictor. To further investigate the

correlation between attributes and hash bits, we visualize

the learned attribute predictor U in Fig. 4 (for space limita-

tion, only 64 bits are shown). The attribute prediction can

be viewed as mapping the binary codes from Hamming s-

pace to the attribute space, where U serves as the projection

matrix. So the correlation coefficient between two columns

of U naturally encodes the inherent correlation between the

two corresponding attributes (please see supplementary ma-

terial). As for the computational complexity, we fix the face

representation (i.e., 4000-dimensional Gabor feature), the

platform (Matlab v7.12 on a PC with Intel Core i7 proces-

sor of 3.40GHz), and the training size (i.e., 5,000 training

instances) for both methods to ensure fair comparison. By

Figure 4: Visualization of the correlation between facial at-

tributes (14 rows) and hash bits (64 columns), i.e., the pro-

posed attributes predictor U in Eqn. (8). For better view,

UT is shown.
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taking the average of ten times running, our method takes

about 100s for training (256 bits), while the training pro-

cess of the baseline method [16] takes about 54 minutes.
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-0.82 Sun Glasses 
+0.86 Positive Exp. 
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-0.50 Neutral Exp. 

Figure 5: Four real cases of facial attributes prediction on

CFW 60K with 256 bits binary codes. Each attribute bar

ranges from the leftmost −1 to the rightmost +1, which re-

spectively indicates the absence and presence of the current

attribute.

4.5. Thinking: Complementary or Not?

Although the proposed method has achieved a certain

level of success on both face image retrieval and facial at-

tributes prediction, it is still not that clear till now whether

the two tasks are complementary. Can they be performed

separately, or is it really necessary to integrate these two in-

to a whole learning framework? To answer such questions,

we further conduct a comparison experiment, i.e., optimiz-

ing the two learning tasks separately and sequentially. More

specifically, we first learn the discriminative binary codes

only with the identity discriminability constraint (Edis), and

then use them for face image retrieval. After that, we uti-

lize the code-attribute consistency constraint (Econs) to com-

pute the closed-form attribute predictor U , and finally use it

for facial attributes prediction. Experimental results can be

found in Table 3.

It is quite obvious to find that without the other task, sin-

gle task learning is not as satisfactory as joint learning. We

believe the reason behind this lies in the natural comple-

mentarity between the two tasks. Let’s give a more detailed

analysis: most attributes involved are identity-preserving,

e.g., gender, race, and these attributes will definitely help

promote the learning of code discriminability. Although

there exist some attributes that are not identity-preserving,

e.g., age and eye accessory, they do have high correlation

with corresponding celebrities. As for the few expression

attributes, since most of the annotations in our CFW 60K

database are negative, it can secure to a large extent that

Table 3: Evaluation of the complementarity of the two

learning tasks, where the retrieval performance is measured

by mAP, and attributes prediction is measured by average

accuracy of the 14 attributes. 256 bits of binary code are

used here.

Learning Strategy Face Retrieval Attributes Prediction

Separate Learning 0.1364 0.8245

Joint Learning 0.1979 0.8605

they will hardly confuse the optimization. Besides, from the

perspective of optimization theory, non-convex optimiza-

tion for single task inevitably has the risk of falling into

local optima, and iteratively optimizing with another com-

plementary task has the potential to approach more stable

global optima. Therefore, it is of great significance to en-

code extra information apart from identity into the human-

incomprehensible binary codes, and we believe that by s-

electing appropriate information, e.g., attributes, comple-

mentarity can be fully explored to benefit both learning

tasks.

5. Conclusion
To address the problem of large-scale face image re-

trieval, we proposed a novel multipurpose binary code

learning method by dexterously integrating three con-

straints into a unified framework, i.e., identity discrim-

inability, code-attribute consistency, and code prediction

stability. The learned codes can be directly used for face

image retrieval, and in addition, they can also be readily

used for facial attributes prediction by mapping the codes

from Hamming space to the attribute space. Along with the

method, we also built a large-scale web celebrity database

with identity and facial attributes annotation, i.e., CFW

60K. Experimental results demonstrate the advantage of our

method over state-of-the-art hashing methods and classic at-

tributes prediction method. We hope this work would pro-

vide a train of thought for researchers that it is of great sig-

nificance to encode auxiliary information into discriminant

binary codes. For future work, we are exploring to apply

the proposed framework to more generalized fine-grained

image retrieval, not limited to faces.
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